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Abstract:

Implementation of sensitivity analysis (SA) procedures is helpful in calibration of models and also for their transposition to
different watersheds. The reported studies on SA of Soil and Water Assessment Tool (SWAT) model were mostly focused
on identifying parameters for pruning or modifying during the calibration process. This paper presents a sensitivity and
identifiability analysis of model parameters that influence stream flow generation in SWAT. The analysis was focused on
evaluating the sensitivity of the parameters in different climatic settings, temporal scales and flow regimes. The global
sensitivity analysis (GSA) technique based on classical decomposition of variance, Sobol’, was employed in this study. The
results of the study indicate that modeled stream flow show varying sensitivity to parameters in different climatic settings. The
results also suggest that the identifiability of a parameter for a given watershed is a major concern in calibrating the model for
the specific watershed, as it might lead to equifinality of parameters. The SWAT model parameters show varying sensitivity
in different years of simulation suggesting the requirement for dynamic updation of parameters during the simulation. The
sensitivity of parameters during various flow regimes (low, medium and high flow) is also found to be uneven, which suggests

the significance of a multi-criteria approach for the calibration of models. Copyright © 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

The use of distributed hydrological models has become
increasingly popular in both research and operational set-
tings. Many of these models are highly complex and are
generally characterized by a multitude of parameters. Due
to spatial variability in the processes simulated by these
models, the value of many of these parameters may not be
exactly known. Further, many of them may not be directly
measurable. Therefore, in most model applications, a cal-
ibration is necessary to estimate model parameter values.
Model calibration helps reduce the parameter uncertainty,
which in turn reduces the uncertainty in the simulated
results. During a model calibration, selected parameters
are allowed to vary within predefined bounds until a suf-
ficient correspondence between the model outputs and
actual measurements are obtained. However, when the
number of parameters in a model is large (either due to
large number of sub-processes being considered or due to
the model structure itself) the calibration process becomes
complex and computationally extensive (Rosso, 1994;
Sorooshian and Gupta, 1995). In such cases, sensitivity
analysis (SA) is helpful to identify and rank parameters
that have significant impact on specific model outputs of
interest (Saltelli ef al., 2000). Generally, SA is employed
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prior to the calibration process in order to identify a can-
didate set of important parameters that are critical for
efficient model calibration.

Techniques employed to perform SA can be grouped
into two broad categories: local SA and global sensitivity
analysis(GSA) (Saltelli et al., 2000; Muleta and Nicklow,
2005; van Griensven et al., 2006). Local SA, also known
as the one-at a —time (OAT) method, identifies the output
responses by sequentially varying each model parameter
by a certain fraction while other parameters are kept at
their nominal values (Spruill et al., 2000; Turanyi and
Rabitz, 2000; Holvoet et al., 2005). Even though the OAT
method is widely applied to various models due to its ease
of operation, the assumption of the linear relationship
between the parameter and the corresponding output is
a major limitation. As the parameter perturbation moves
farther away from the nominal parameter value, the OAT
analysis results become less reliable (Helton, 1993).

Global SA (GSA) methods, in contrast, explore the
entire range of parameters. In this method, all param-
eters under consideration are simultaneously perturbed
allowing investigation of parameter interactions and their
impacts on model outputs. The variance decomposition
based GSA method is a widely employed technique
in which the output variance between simulations is
decomposed into the contribution from individual param-
eters. The main features of variance decomposition based
GSA techniques are: model independence, potential to
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capture the full range of model parameter values, and
the ability to identify interactions among parameters
(Liburne et al., 2006). The Fourier amplitude sensitiv-
ity test (FAST) (Cukier et al., 1973) and Sobol’s meth-
ods (Sobol’, 1993) are the most popular and widely
investigated (Homma and Saltelli, 1996; Ratto et al.,
2001; Francos et al., 2003; Cariboni et al., 2007) vari-
ance decomposition based methods. It has been reported
that the FAST method is not efficient in addressing higher
order interaction terms (Saltelli and Bolado, 1998). On
the other hand, Sobol’s method can estimate the inter-
actions between the parameters and the total sensitivity
index of individual parameters (Sobol’ 1993, 2001). It
should be noted that though Sobol’s method has found
numerous applications in many fields of science and engi-
neering, its application in hydrology is very limited (Pap-
penberger et al., 2006, 2008; Tang et al., 2007a,b; Cloke
et al., 2008).

The Soil and Water Assessment Tool (SWAT) is a
hydrologic model widely used to evaluate the impact
of climate, land use, and land management decisions
on stream flow and water quality (Arnold et al., 1998;
Arnold and Fohrer, 2005; Confesor and Whittaker, 2007;
Zhang et al., 2008). The model has gained international
recognition as is evidenced by a large number of applica-
tions of this model (Anand et al., 2007; Gassman et al.,
2007). SWAT is a process-based distributed simulation
model operating on a daily time step. The SWAT is also
characterized by a large number of parameters. Despite
a plethora of applications using SWAT, a comprehen-
sive evaluation of its parameter sensitivity is still lack-
ing. While a few studies about parameter sensitivity in
SWAT have been reported (Arnold et al., 2000; Spruill
et al., 2000; Osidele and Beck, 2001; Lenhart et al.,
2002; Francos et al., 2003; Holvoet et al., 2005; White
and Chaubey, 2005; van Griensven et al., 2006; Arabi
et al., 2007; Muleta et al., 2007; Stow et al., 2007), these
were primarily focused on identifying the parameters that
should be considered for model calibration. The sensitiv-
ity of model parameters may vary considerably among
watersheds, time periods of simulation, and the simula-
tion time step (Wagner et al., 2001; Demaria et al., 2007,
Tang et al.. 2007a,b). With the exception of a few recent
studies, most of the SA studies pertaining to watershed
models have not comprehensively evaluated these varia-
tions in sensitivity (Tang et al., 2007b; van Werkhoven
et al., 2008).

Another concern in hydrologic modeling is the equifi-
nality of model parameters where multiple combinations
of parameter values may yield the same model output
(Johnston and Pilgrim, 1976; Beven and Binley, 1992;
Wagener and Kollat, 2007). Consequently, the identifia-
bility of optimal combinations of parameters that result in
a truly calibrated model is a major challenge. Therefore,
the identifiability of parameters should also be evaluated,
in addition to SA, prior to a model calibration so that con-
fidence in the calibrated parameter values is enhanced.
While identifiability evaluation has been reported for a
few hydrologic models (Wagener et al., 2003; Wagener
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and Kollat, 2007), we are not aware of any study that has
evaluated the identifiability of SWAT parameters.

The focus of this study was to critically evaluate the
sensitivity and identifiability of thirteen SWAT param-
eters that influenced stream flow generation at various
temporal scales and flow regimes. We investigated the
parameter sensitivity using Sobol’s method in two water-
sheds located in the USA: (i) the St. Joseph River water-
shed located in Indiana, Michigan, and Ohio; and (ii) the
Illinois River watershed located in Arkansas. The remain-
der of the paper is organized as follows: Following this
introduction, a brief description about the methodology
is presented, in which discussions about SWAT and its
parameters are provided. This is followed by details about
the study watersheds and data availability. Subsequently,
the details about Sobol’s SA method and its implemen-
tation are discussed. The results of the sensitivity and
identifiability analysis are examined and discussed in the
subsequent sections.

METHODOLOGY

The GSA employed Monte Carlo simulation of the SWAT
using an ensemble of parameter sets generated by a suit-
able sampling technique. The predicted stream flow was
used to compute the sensitivity of the SWAT parame-
ters. The identifiability of parameters was investigated
through visual evaluation. In this study, 13 parameters of
the SWAT (Table I) that impacted the simulated stream
flow were analysed for their sensitivity and identifiability.

The latin hypercube sampling (LHS) technique (Mckay
etal., 1979) was used to effectively sample the high-
dimensional parameter sampling space. The LHS method
generates samples from the assigned probability distribu-
tion of parameters using a stratified sampling approach.
Since the parameter probability density function (PDF)
of most of the model parameters was not known, a uni-
form distribution was assumed (Freer et al., 1996; Man-
ache and Melching, 2008). To generate a sample size
of N for the variables 6; = (6}, 6>, ..., 6), the range of
each 6; was stratified into N disjointed intervals of equal
probability and one value from each of these strata was
randomly selected without replacement. This process was
repeated until all 13 parameters under consideration were
sampled. Once the Monte Carlo simulations were com-
pleted for all combinations of parameter values, Sobol’s
method was employed for the SA. The details about
Sobol’s method are discussed in later sections. A per-
formance index of the model (Root Mean Square Error
(RMSE) or Nash-Sutcliffe efficiency) for all the simu-
lations was plotted against the corresponding parameter
value. A unique clear trough (RMSE) or a unique clear
peak (efficiency) in the plot was used as an indicator of
identifiability of parameter values for model calibration.

Soil and water assessment tool (SWAT) model

SWAT model developed by the United States Depart-
ment of Agriculture is a conceptual, distributed hydro-
logic model that operates on a daily time step (Arnold
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Table 1. The SWAT parameters that influence stream flow simulation in the model and their range of perturbation

Symbol Description Unit Min. Max. Process
ALPHA BF Base flow recession coefficient Days 0 1 Groundwater
CN_f* Curve number % —25 15 Surface runoff
ESCO Soil evaporation coefficient — 0-001 1 Evapotranspiration
GW_DELAY Groundwater delay time Day 1 500 Groundwater
GW_REVAP Revap coefficient — 0-02 0-2 Groundwater
GWQMN Depth of water in shallow aquifer mm 0 5000 Groundwater
OVN Manning’s N — 0-1 0-3 Overland flow
SFTMP Snowfall temperature °C -5 5 Snow

SLOPE? Slope Y% —0-5 1 Surface runoff
SLSUBBSN* Slope sub-basin % —0-5 1 Surface runoff
SOL_AWC? Available water capacity % —03 2 Groundwater, evaporation
SOL_K* Saturated hydraulic conductivity % -0-5 1 Groundwater
SURLAG Surface lag Day 1 12 Surface runoff

2 These parameters were changed as a percentage of their default values to maintain heterogeneity.

et al., 1993). The model was developed to assist water
resource managers in assessing the impact of different
management practices on long-term water supplies and
non-point source pollution in large river basins. Spatially,
the model divides a watershed into sub watersheds or sub-
basins based on topographic information. The sub-basins
are further divided into smaller spatial modeling units
known as hydrologic response units (HRU), depending on
the heterogeneity of land use and soil types. An HRU is
the fundamental spatial unit upon which SWAT simulates
the water balance. The hydrological processes modeled
in SWAT are surface runoff, soil and root zone infiltra-
tion, evapotranspiration, soil and snow evaporation, and
baseflow (Arnold et al., 1998). SWAT also simulates the
fate and transport of nutrients, sediment, pesticides, and
bacteria in both land and water phases.

SWAT divides the hydrology of a watershed into two
major phases. The first division is the land phase of the
hydrologic cycle, which controls the amount of water,
sediment, nutrient, and pesticide loadings to the main
channel in each sub basin. The second division is the
water or routing phase of the hydrologic cycle, which
considers the movement of water, sediments, etc. through
the channel network to the watershed outlet. The land
phase of the hydrologic cycle is modeled in SWAT based
on the water balance equation:

t
SW, =8SWo+ Z(Rday — Ogut — Ey — Wseep — ng)

i=1
(1)

where SW, is the final soil water content (in mm
H,O), SW, is the initial soil water content (mm),
t is the time (days), Ryay is the amount of precipitation on
day i (mm), Qg is the amount of surface runoff on day
i (mm), E, is the amount of evapotranspiration on day
i (mm), Weeep is the amount of percolation and bypass
flow exiting the soil profile bottom on day i (mm), and
Qgw is the amount of return flow on day i (mm). Each
component of the water balance equation (Equation 1) is
modeled using well established relationships in hydrol-
ogy (Neitsch et al., 2002).

Copyright © 2010 John Wiley & Sons, Ltd.

The SWAT parameters that affect stream flow generation

The parameters of the SWAT affecting the stream
flow were identified through a detailed literature review
(Table I) (Neitsch et al., 2002; Arabi et al., 2007) which
resulted in the identification of 13 parameters used in
this study of the SA. The range of parameter values were
taken directly from the SWAT user’s manual (Neitsch
et al., 2002). SFTMP and SURLAG are sub-basin level
parameters. SFTMP is the snowfall temperature or the
mean air temperature at which precipitation is equally
likely to be rain or snow. SURLAG controls the fraction
of the total water that is allowed to enter the stream on
any specific day. In large basins with a time of concentra-
tion greater than 1 day, only a portion of surface runoff
will reach the main channel in 1 day. The parameters
ALPHA BF, GW_DELAY, GW REVAP and GWQMN
affect groundwater flow. ALPHA BF or the base flow
recession coefficient is a direct index of ground water
flow response to changes in recharge. GW_DELAY is
the lag between the times that water exits the soil pro-
file and enters the shallow aquifer. GW_REVAP or the
ground water ‘revap’ coefficient controls the water move-
ment from shallow aquifer to the unsaturated soil layers.
GWQMN is the threshold depth of water in the shal-
low aquifer required for return flow to occur. The soil
evaporation compensation factor or ESCO controls the
soil evaporative demand that is to be met from differ-
ent depths of the soil. OV_N (overland Manning’s n),
SLOPE, SLSUBBSN and CN_f (curve number), con-
tribute directly to surface runoff generation. Soil moisture
characteristics are represented by SOL_AWC and SOL_K
in the model. SOL_AWC or plant available water is esti-
mated as the difference between the field capacity and
the wilting point. SOL_K or saturated hydraulic con-
ductivity relates soil water flow rate to the hydraulic
conductivity.

Study area and data availability

St. Joseph Watershed. The St. Joseph River watershed
(USGS Hydrologic Unit Code or HUC No. 04 100 003;
Figure 1), with a drainage area of 2800 km?, is located in

Hydrol. Process. 24, 1133—-1148 (2010)
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Figure 1. Location map of St. Joseph River basin, USA

Indiana, Michigan, and Ohio, USA. The St. Joseph River
is approximately 100 km long and is the main outlet for
the watershed. Input files for SWAT (topographic, land
use, soil, and stream network data) were organized based
on GIS data supplied by the St. Joseph River Watershed
Initiative. A 30 m resolution digital elevation model
(DEM) from National Elevation Dataset (NED NAD-83),
developed by USGS was used to delineate the watershed.
The United States Department of Agriculture (USDA)
Natural Resources Conservation Service (NRCS) State
Soil Geographic Database (STATSGO) for Indiana, Ohio,
and Michigan was to characterize soils in the watershed.

Land used in the St. Joseph River watershed is pri-
marily agricultural with corn and soybean identified as
major crops. The major land use classes are agricul-
ture (59-2%), pasture (20-7%), forest (13-1%), wetland
(3-9%), and urban (3-1%). Major soils in the watershed
are Glynwood, Pewamo, and Brookston, which cover
about 87% of the total watershed area. These soils are
somewhat poorly drained and the parent material is com-
pacted glacial till. The predominant soil textures are silt
loam, silt clay loam and clay loam. The predominant soil
hydrologic group of the watershed is C, covering 74-5%
of the total area, followed by groups B and A covering
23 and 2-5% of the total area, respectively. The eleva-
tion of the watershed varies from 230 to 335-3 m with
an average terrain elevation of 281 m. The slope of the
area varies from 0 to 2%.

Weather data from four weather stations and daily
stream discharge data from five stream gauge stations
were obtained from the National Climatic Data Cen-
ter (NCDC) and the United States Geological Sur-
vey (USGS) websites, respectively. Data from the
four weather stations were spatially interpolated to the
centroid of 0-1° x 0-1° grid cells covering the entire

Copyright © 2010 John Wiley & Sons, Ltd.

watershed using a Kriging technique. The interpolated
precipitation data was used to drive SWAT for the
watershed. The model was set up for 13 years from
1987-1999, out of which the first 3 years were consid-
ered the model warm up period. Thus, 10 years of data
(1990-1999) were available for analysis. Measured daily
stream flow data from USGS gauging station 4 180000
was used for the analysis. SWAT used 50 sub-basins and
431 HRUs to represent the St. Joseph River watershed.

Lllinois River watershed. The Illinois River watershed
(USGS 8 digit HUC 11110103), located in Northwest
Arkansas, has an area of about 1490 km? (Figure 2). The
data used to set up the SWAT (GIS database of elevation,
soil and land use details, and tabular weather data) were
obtained from the Watershed Modeling group of the
University of Arkansas, Fayetteville, Arkansas, USA.

The digital elevation map of the area with a 30 m reso-
Iution was obtained from the USGS (http://seamless.usgs.
gov/website/seamless/viewer.htm) and used to provide
elevation details for the SWAT and to delineate water-
shed boundaries. Watershed elevation varies from 280 to
600 m with a mean elevation of 381 m. The major land
use category (55% of the total land area) in the watershed
was pasture under tall Fescue and Bermuda. The major
soil types of the basin were Captina, Nixa, Clarksville,
and Enders which covered about 75% of the total area.
The soil information for the watershed was obtained from
the USDA-NRCS Soil Survey Geographic (SSURGO)
database. The predominant soil hydrologic group of the
watershed was C, which covers 66-3% of the total area,
followed by groups B and D which cover 30-6 and 3-1%
of the total area, respectively.

For the Illinois River watershed, the SWAT was applied
for 9 years (1995-2003), for which the first 3 years

Hydrol. Process. 24, 1133-1148 (2010)
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Figure 2. Location map of Illinois River basin, USA

were considered as warm up period. Thus, data for
6 years (1998-2003) was considered for the analysis.
The measured daily stream flow values from the USGS
gauging station 07 195 430 (Illinois River south of Siloam
Springs) were used for model calibration and evaluation.
The SWAT setup used 26 sub-basins and 286 HRUs to
represent the Illinois River watershed.

The St. Joseph River watershed experienced an average
annual precipitation of 82-5 cm over the study period.
The watershed lies in the mid-west region of the USA
and experiences snowfall during winter. The 10 years
(1990-1999) for which the SWAT was set up for this
basin, were characterized with a minimum daily flow of
0-6 m%/s and maximum daily flow of 147-7 m3/s. The
mean daily flow during this period was 8-3 m3/s with
a standard deviation of 13-1 m%/s. The Illinois River
basin experienced an average annual rainfall of 90-5 cm
over the study period. The daily flow ranged from a
minimum of 2-4 m3/s to a maximum of 538 m?>/s between
1998 and 2003. The mean flow during this period was
16-5 m3/s with a standard deviation of 33-7 m%/s. The
Illinois River basin lies in the southern region of the
USA and experiences high temperature, and evaporation
is a dominant hydrological process in this basin, with an
average annual potential evaporation of 105 cm (Safari
and De Smedt, 2008).

Sobol’s sensitivity analysis

Sobol’s method (Sobol’, 1993) is a variance based
GSA method in which the total output variance within
an ensemble is decomposed into the variance caused by
each parameter. The model output variance is expressed
as the variance in model performance measures such as

Copyright © 2010 John Wiley & Sons, Ltd.

RMSE or Nash-Sutcliffe efficiency. RMSE was used in
this study. The method described below is adopted from
Tang et al., (2007b).

Consider a generic model described by:

y = fx16)

where, f(.) is the function described by the model, y is
the output from the model (stream flow in this study)
corresponding to the inputs x (rainfall, temperature,
evaporation, etc.) and 6 is the vector of parameters of
the model. If the model output varies with time, there
could be a time subscript added to each of these variables.
Sobol’s variance decomposition is:

ZDij + Z Dijx + D12 m

i<j i<j<k

2)

D(y)=> D;+ 3)

where D(y) is the total variance of the model, D; is the
measure of individual variance due to the i parameter,
and D;; is the variance induced due to the interaction
between i" parameter and j® parameter, m is the total
number of parameters. For this study, the primary interest
was to get each parameters’ individual contribution (first
order indices) and the total contribution (total order)
to the output. The first order and total order Sobol’s
sensitivity indices are defined as:

First order index : S; = D;/D(y)
1 — (D~;/D(y))

“4)
&)
where S; refers to the sensitivity of i parameter to the

model output, St; refers the total order sensitivity that
is the sum of independent and interactive effects of i

Total order index : Sty

Hydrol. Process. 24, 1133—-1148 (2010)
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parameter to the output, D.; is the average variance
resulting from all the parameters, except i parameter.

The variance terms of Equations (3)-(5) —D, D; and
D..;, are calculated by numerical integration within a
Monte Carlo approximation framework (Sobol’, 1993,
2001; Tang et al., 2007b). The total variance D is the
statistical variance of the RMSE across the simulations.
The Monte Carlo approximation for the variance terms
are:

N 1 <&
fo==2 1) (6)
s=1

N
b=-3" ') f} ™
s=1
R R 2
DNV G SR )
s=1
. 1< 2
D=3 fEE - TF O
s=1

where n defines the Monte Carlo sample size, 6 represent
the sampled individual in the unit hypercube, and (a) and
(b) are two different sets of samples. Parameters from
the sample set (a) denoted as 6% and 6% show the i
parameter taken from sample (b). 6% _j)s denote that all
the parameters from sample set (a) are taken except i™
parameter. Equations (6)—(9) provide a way to compute
the first order and total order sensitivity of each parameter
of the model.

Implementation of sensitivity and identifiability analysis

Equations (6)—(9) depict the Monte Carlo approxima-
tion formulae for estimating the terms in the decompo-
sition of total variance. However, a robust computation
strategy proposed in Liburne et al., (2006) for the Sobol’s
method was applied in this study for computing the vari-
ance terms D, D; and D~; as below.

Copyright © 2010 John Wiley & Sons, Ltd.

e For each parameter, 2000 different parameter values
were generated using the LHS technique.

e The parameter values were split into two equal matrices
(A and B) (Figure 3).

e Two matrices C; and D; were derived by swapping i
columns of A and B (Figure 3).

e Monte Carlo simulation of the model was performed
using all the samples in all four matrices (A, B, C
and D), and the model performance index for each
simulation was computed.

e Sensitivity using Equations (10)—(12) were calculated.

According to Liburne et al., (2006), the first order and
total order equations are:

S;= = (10)
D YaYw- £

D_; Y Yon — f2
sp=2c o YaYen = /o (1

D YwYu — fo

where, the mean
fo= 1i)Ys (12)
n s=1 A

Note that the S; and S; can be computed in eight different
ways (Liburne et al., 2006) using Equations (10) and (11)
by interchanging the simulation matrices A, B, C, and
D in (10) and (11). The average value of these eight
ensembles of sensitivity indices is considered to be the
representative value of sensitivity for the parameter.

The total number of simulations required for this
computation is ((k + 1) x n), where k is the number of
parameters and n is the sample size. Consequently, in the
current study, 28 000 model simulations were performed
for the SA (13 parameters and 2000 samples each).

The identifiability of parameters was analysed by
visual examination of scatter plots of model parameter
values and their corresponding Nash-Sutcliffe efficiency
(Nash and Sutcliffe, 1970). A parameter was considered

Hydrol. Process. 24, 1133-1148 (2010)
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identifiable through calibration only if the scatter plot had
a definite maximum.

Parameter sensitivity and identifiability analysis for
two watersheds of contrasting climates, different years
of simulation, and different flow regimes. The above
procedure was implemented to evaluate if the parameter
sensitivity and identifiability were different for the two
watersheds. As discussed above, the two watersheds are
located in contrasting climates. Similarly, the sensitivity
and identifiability of model parameters in simulating
stream flow in different years was also evaluated in this
study.

It is well understood that the dynamics of stream flow
generation mechanism varies in different ranges of flow
as the interaction between the basin characteristics and
the climatic inputs are different at various ranges of flow
(Zhang and Govindaraju, 2000). Consequently, the model
parameters may also exhibit different sensitivity in dif-
ferent ranges of flow. In order to assess this, the total
flow was grouped into three distinct clusters. The sensi-
tivity of model parameters in each of these clusters was
estimated. The clustering algorithms classify the data into
different groups according to the underlying structure of
the data. In many real situations, fuzzy clustering is more
natural than distinct clustering with sharp boundaries, as
objects on the boundaries between several classes are
not forced to fully belong to one of the classes, but
rather are assigned membership degrees between O and
1 indicating their relative associations among different
groups. Fuzzy C-means (FCM) clustering is one of the
most commonly used methods (Bezdek, 1981), which is
based on the minimization of an objective function called
C-means functional (Bezdek, 1981). The input vector for
FCM clustering was obtained by a procedure proposed
by Sudheer et al., (2002). Once the classification of data
points into three different clusters (corresponding to low,
medium and high flow conditions) was performed, the
sensitivity and identifiability analysis was conducted in
each of these clusters.

RESULTS AND DISCUSSIONS

Parameter sensitivity and identifiability analysis for two
watersheds of contrasting climate

The Sobol’s sensitivity indices for the two watersheds
are presented in Table II. For the St. Joseph River water-
shed, SURLAG and CN_f were the two most sensitive
parameters with the sensitivity index values of 0-51 and
0-346, respectively. The fraction of runoff that reaches
the watershed outlet on any given day is controlled by
SURLAG. The sensitivity of daily runoff simulations
to SURLAG in the St. Joseph watershed was expected
since this basin has a relatively longer time of con-
centration. The parameter CN_f is the primary influence
on the amount of runoff generated from a hydrologic
response unit, and hence a relatively greater sensitiv-
ity index can be expected for most of the watersheds.

Copyright © 2010 John Wiley & Sons, Ltd.
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Table II. Sobol’s sensitivity indices for SWAT parameters for St.
Joseph River watershed and Illinois River watershed

Parameter St. Joseph River Illinois River
Sobol’ first Rank Sobol’ first Rank
order indices order indices
SFTMP 0-032 3 0-002 7
SURLAG 0-510 1 0-001 8
ALPHA BF 0-000 9 0-015 5
GW_DELAY 0-000 9 0-000 9
GW_REVAP 0-000 9 0-000 9
GWQOMN 0-000 9 0-000 9
ESCO 0-015 4 0-421 1
OV_N 0-005 7 0-000 9
SLOPE 0-002 8 0-018 4
SLSUBBSN 0-007 6 0-000 9
CN.f 0-346 2 0-385 2
SOLAWC 0-010 5 0-162 3
SOLK 0-000 9 —0-003 6

Other model parameters having relatively minor impact
on hydrologic response predictions in the watershed were
SFTMP, ESCO, SOL_AWC, and SLOPE with sensitivity
indices of 0-032, 0-015, 0-01, and 0-002, respectively. It
should be noted that the sum of the first order sensitiv-
ity indices was close to one (= 0-93) for the St. Joseph
River watershed suggesting that there was some inter-
action among the thirteen parameters considered in this
analysis.

For the Illinois River watershed, stream flow was most
sensitive to ESCO and CN_f with corresponding sensi-
tivity indices of 0-421 and 0-385, respectively (Table II).
The evaporation losses were higher in the Illinois River
watershed compared to the St. Joseph River watershed,
primarily due to greater mean air temperature and solar
radiation in the watershed. Consequently, stream flow is
sensitive to ESCO, which directly influences the evap-
otranspiration losses from the watershed, in the Illinois
River watershed. Other researchers have also reported
ESCO to be a parameter SWAT is sensitive to in the Illi-
nois River watershed (Migliaccio and Chaubey, 2008).
Gassman et al., (2007) summarized the results of the
SWAT calibration and reported that CN_f was an impor-
tant parameter affecting hydrologic simulations in all of
the model applications. Other parameters affecting stream
flow in the Illinois River watershed were SOL_AWC,
SLOPE, ALPHA BF, SOL_K, SFTMP, and SURLAG.
It should be noted that SFTMP was ranked third for
the St. Joseph River watershed, but eighth for the Illi-
nois River watershed. This was reasonable since the St.
Joseph River lies in Mid-west USA and experiences con-
siderably more snowfall compared to the Illinois River
basin. The parameter SURLAG did not play a major role
in the Illinois River watershed as the time of concentra-
tion was considerably less compared to the St. Joseph
River watershed. It should be noted that the parame-
ters related to groundwater flow such as GW_DELAY,
GWQMN, and GW_REVAP were not significant in either
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Figure 4. Scatter plot of likelihood values of simulations along the variation of parameters for identifiability analysis (St. Joseph River basin)

watershed implying that these parameters may not play a
critical role in calibrating the SWAT.

Figure 4 presents the variation of Nash-Sutcliffe effi-
ciency for the St. Joseph River watershed as a function
of variation in each of the 13 parameters considered in
this study. It is evident from Figure 4 that SURLAG and
CN_f were the only two parameters identifiable for the
St. Joseph River watershed. However, it should be noted
that non-identifiability of a parameter does not indicate
that the model was not sensitive to these parameters.
The variation of Nash-Sutcliffe efficiency as a function

Copyright © 2010 John Wiley & Sons, Ltd.

of variability in model parameters is shown in Figure 5
for the Illinois River watershed. The identifiable parame-
ters for this watershed were ESCO, CN_f and SOL_AWC
(Figure 5). However, presence of multiple peaks in the
Nash-Sutcliffe model efficiency for SOL_AWC indicated
that estimation of this parameter may not be trivial.

The identifiable parameters were not consistent bet-
ween watersheds, except for CN_f. The CN_f parameter
is the primary control on the abstraction of runoff from
precipitation and has been reported to be a significant
driver of model output by many researchers (Arnold

Hydrol. Process. 24, 1133-1148 (2010)
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Figure 5. Scatter plot of likelihood values of simulations along the variation of parameters for identifiability analysis (Illinois River basin)

et al., 2000; Francos et al., 2003; White and Chaubey,
2005; Holvoet et al., 2005; van Griensven et al., 2006;
Arabi et al., 2007; Muleta et al., 2007). The results
from this study indicate that the value of CN_f can
be estimated without much difficulty during calibration.
However, estimation of non-identifiable parameters, such
as SFTMP and ESCO for the St. Joseph River watershed,
would be difficult as there may be many combinations
of these parameters that would result in similar model
performance.

The results indicate that the sensitivity of SWAT
parameters varied between the two watersheds suggest-
ing the importance of SA for any watershed under
SWAT modeling consideration. Even though many of the

Copyright © 2010 John Wiley & Sons, Ltd.

parameters were sensitive and affected the stream flow
simulation, only a small number of the sensitive param-
eters were identifiable. Similar results were reported
by Demaria et al., (2007). Care must be taken when
calibrating the SWAT with non-identifiable parameters as
these may lead to equifinality of the parameter values.
Under such cases, a user should check if the final param-
eter values correspond to the watershed characteristics
and its underlying hydrologic processes.

Parameter sensitivity and identifiability analysis
for different years of simulation

Temporal variation in the sensitivity of the SWAT to
parameters during different years was evaluated for the

Hydrol. Process. 24, 1133—-1148 (2010)
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Figure 6. The variation of Sobol’s sensitivity of SWAT parameters along the wetness of the years

St. Joseph River watershed. This analysis helped identify
the impact of weather variations as well as the initial con-
dition of the watershed at the beginning of each simula-
tion year on the model parameter. The temporal variation
of sensitivity indices in terms of their relative impor-
tance (% of the total) are presented in Table III. While
the sensitivity values were not consistent from 1 year to
the other, SURLAG and CN_f were the most sensitive
parameters for all simulation years. A clear relationship
between the wetness of the watershed as indicated by
the stream flow and the parameter sensitivity in differ-
ent years is evident. This relationship is also supported
by Figure 6, in which the variation in sensitivity of the
parameters is plotted against the annual stream flow. It
can be observed from Figure 6 that SFTMP, SURLAG,
SLOPE, and SLSUBBSN were positively correlated with
the stream flow. Since all these parameters generally
affected highflow simulations, the observed correlation
of sensitivity with the stream flow is reasonable. On the
other hand, ESCO, CN_f, SOL_AWC, and SOL_K were
negatively correlated with the stream flow implying that
the sensitivity of the parameter is greater in the dry years
compared to the wet years. For example, in 1990 (a rela-
tively wet year), the SURLAG and SFTMP were found to
be highly sensitive with sensitivity index values of 0-54
and 0-25, respectively. The sensitivity index for CN_f
was 0-15 in this wet year and was much smaller com-
pared to the sensitivity index for the entire simulation
period (= 0-35, Table II). Further, in 1995, a relatively
dry year, the sensitivity index for CN_f was 0-63 as cor-
responding to the SURLAG and SFTMP values of 0-2
and 0-01, respectively.

Figure 7 shows the variation of identifiability of
SURLAG and CN_f for the St. Joseph River watershed
with RMSE as the identifiability indicator. SURLAG

Copyright © 2010 John Wiley & Sons, Ltd.

Table III. Variation of relative importance of SWAT parameters
along the wetness (mean annual flow) of the year

Year 1995 1998 1997 1990
Mean annual flow (m?/s) 51 7-4 94 13-4
Relative importance of
parameters (%)
SFTMP 1-2 0-0 0-8 259
SURLAG 22-1 359 38-7 557
ESCO 41 2-5 2:3 0-6
OV_N 0-3 0-4 0-4 0-5
SLOPE 0-1 0-1 02 0-2
SLSUBBSN 0-3 0-5 0-6 0-8
CN_f 70-3 593 55-7 15-8
SOL_AWC 1.7 0-8 1-3 0-5
SOL_K 0-1 0-2 0-1 0-0

was identifiable during each of the 10 years of sim-
ulation even though the general relationship between
the parameter values and the RMSE varied among
years. On the other hand, the CN_f shows a contrast-
ing behavior, compared to SURLAG, as the trough
of the RMSE was located corresponding to different
values of CN_f in different years. Further, the mini-
mum value of RMSE was not clearly distinguishable in
every year (for example, 1993 and 1997) suggesting that
the estimation of optimal value of this parameter may
be a challenging task, especially when the data corre-
sponding to these years was employed for the model
calibration.

Parameter sensitivity and identifiability analysis
for different flow regimes

In order to analyse the sensitivity of SWAT parameters
in various flow regimes, Sobol’s sensitivity index for
each parameter was computed for different clusters of
flow data. As discussed earlier, a FCM clustering scheme

Hydrol. Process. 24, 1133-1148 (2010)
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Figure 7. Plot depicting the variability of identifiability of two SWAT parameters (SURLAG and CN_f)

along the years of simulation: St. Joseph

River watershed

was used to group the flow series into three different
clusters. The characteristics of three clusters and the
sensitivity of each parameter in each cluster are given
in Table IV for the St. Joseph River watershed. Clusters
1, 2, and 3 represent the high flow, medium flow, and low
flow conditions, respectively. Sensitivity of SURLAG
was greatest in cluster 1 (high flow). However, CN_f
had the greatest sensitivity index in cluster 3 (low flow).
Note that these parameters exhibited a similar sensitivity
for different simulations years, i.e. SURLAG was highly

Copyright © 2010 John Wiley & Sons, Ltd.

sensitive in wet years and curve number was more
sensitive in dry years.

In the high flow regime (cluster 1), 86% of the total
variation of RMSE among the 28 000 model simulations
was caused by SURLAG (Table 1V). It was also evident
that SWAT was sensitive to parameters such as SFTMP,
OV_N, and SLSUBBSN in the high flow regime. In the
medium flow regime (cluster 2), the greatest sensitivity
was found towards the parameters SURLAG, CN_f, and
SFTMP with sensitivity index values of 0-49, 0-29,

Hydrol. Process. 24, 1133—-1148 (2010)
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Table IV. Sobol’s sensitivity indices (first order) for parameters
at different ranges of flow and the cluster characteristics

Cluster characteristics Clusterl Cluster2 Cluster3
Minimum flow (m>/s) 9-1 29 0-6
Maximum flow (m?/s) 147-7 86-6 23.7
Parameters Sobol Indices  Sobol Indices  Sobol Indices
SFTMP 0-03 0-12 0-01
SURLAG 0-86 0-49 0-10
ALPHA _BF 0-00 0-00 0-00
GW_DELAY 0-00 0-00 0-00
GW_REVAP 0-00 0-00 0-00
GWQMN 0-00 0-00 0-00
ESCO 0-00 0-01 0-04
OV_N 0-01 0-00 0-00
SLOPE 0-00 0-00 0-00
SLSUBBSN 0-01 0-01 0-00
CN_f 0-00 0-29 0-77
SOL_AWC 0-00 0-01 0-02
SOL K 0-00 0-00 0-00

and 0-12, respectively. In the low flow regime (cluster
3), CN_f contributed to 77% of the total variation in
RMSE. The SWAT was found to be relatively less
sensitive to SURLAG in this flow regime. In the low
flow regime, SWAT was also found to be sensitive to
ESCO and SOL_AWC. It should be noted that both of
these parameters affect simulation of evapotranspiration
processes in the SWAT.

Many researchers have reported difficulty in achieving
good SWAT simulations for low flow conditions (van
Liew and Garbrecht, 2003; Sudheer et al., 2007; Migli-
accio and Chaubey, 2008). This could be attributed to
the inability of the runoff curve number (CN_f) to ade-
quately account for hydrologic abstractions for various
antecedent soil moisture conditions. The curve number
represents an overall response of each HRU and does
not account for near-stream saturation excess runoff or
contributions from variable source areas (van Liew and
Garbrecht, 2003). An improved SWAT performance is
reported when such processes are included in the SWAT
(Easton et al., 2008).

Figure 8 shows that the identifiability of SURLAG
in the St. Joseph River watershed varied for different
ranges of flow. A distinct minima in the RMSE was
obtained for medium and high flow conditions. However,
a similar pattern was not obtained for the low flow con-
ditions, indicating that estimation of SURLAG for low
flow simulations may be difficult. The identifiability of
CN_f was observed to be different for different ranges
of flow. The minimum value of RMSE corresponds to
different values of the parameter in the low, medium,
and high flow ranges. This result indicates that the opti-
mal value of the parameter will be different based on
flow ranges, suggesting the adoption of a multi-criteria
method for calibration. For the Illinois River watershed
(Figure 9) no clear minimum RMSE was observed for
low flow range for any of the parameters. In medium

Copyright © 2010 John Wiley & Sons, Ltd.
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and high flow ranges, though some of the parameters
were identifiable, the parameter values corresponding to
minimum RMSE were different in both flow regimes
for CN_f and SOL_AWC. These results further indi-
cate a need to perform calibration using a multi-criteria
approach based on the model performance in different
flow ranges.

SUMMARY AND CONCLUSIONS

The implementation of SA procedures is helpful in cal-
ibration of hydrologic models and also for their trans-
position to different watersheds. This paper presents
results of a detailed sensitivity and identifiability anal-
ysis performed for the SWAT on two watersheds located
in contrasting climate conditions in the USA: (i) the
St. Joseph River watershed located in Indiana, Michi-
gan, and Ohio and (ii) the Illinois River watershed
located in Arkansas. The Sobol’s variance decom-
position technique was used in this study. Thirteen
parameters that affected stream flow simulation by the
SWAT were evaluated using 28000 different model
simulations.

The results from this study indicated that the identifi-
ability of certain SWAT parameters could be limited and
lead to equifinality problems in calibration. The results
also indicated that the sensitivity of model parameters
was closely connected to the climatic and hydrologic
characteristics of the watershed. The parameter SURLAG
was found to have a significant impact on the simu-
lation of hydrologic response in the St. Joseph River
watershed due to a longer time of concentration in this
watershed. On the other hand, SWAT was not sensitive
to this parameter in the Illinois River watershed due to a
smaller time of concentration in the Illinois River water-
shed. Further, the sensitivity index of ESCO was greater
for the Illinois watershed as the evapotranspiration pro-
cess was a more dominant control of the soil moisture in
this basin.

The results from this study indicated that the sen-
sitivity of the SWAT parameters varied during differ-
ent years of simulation. There was a direct relation-
ship between the stream flow and the parameter sen-
sitivity. For example, SWAT was more sensitive to
CN_f and ESCO under low stream flow conditions
than under high or medium flows. This result suggests
that a single value for a parameter may not appropri-
ately represent hydrologic processes during various flow
regimes. A multi-criteria calibration approach may be
viable in such situations, however, further studies are
needed to evaluate if such approaches could improve
the SWAT performance. The parameter identifiability
analysis indicated the parameter identifiability varied
in different flow regimes. Greater parameter sensitiv-
ity does not mean that the parameter is also identi-
fiable. Model calibration with non-identifiable parame-
ters may lead to equifinality problems during the model
calibration.

Hydrol. Process. 24, 1133-1148 (2010)
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Figure 8. Plot depicting the variability of identifiability of two SWAT parameters (SURLAG and CN_f) along different ranges of flow: St. Joseph
River watershed

The variation in inter-annual sensitivity of SWAT
parameters brings in a research question about the current
calibration procedures. Under currently accepted cali-
bration procedures constant values for parameters dur-
ing the simulation period are generally assumed despite
varying performance by the model during different sim-
ulation periods. Therefore, the question that arises is
whether there should be dynamically changing param-
eter values during the period of simulation so as to

Copyright © 2010 John Wiley & Sons, Ltd.

improve model simulations? It is worth mentioning
that some parameters of the SWAT (e.g. CN_f) are
updated based on the antecedent moisture condition,
tillage or crop management practices in the watershed,
and the growth stages of the crop. This is reflected in the
sensitivity of CN_f for the low and medium stream flow
regimes (Table IV). It will be interesting to see if the
SWAT results can be improved if a dynamic parameter
variation along the simulation period is implemented.

Hydrol. Process. 24, 1133—-1148 (2010)
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